
Linear Attention Notes

Huwan Peng

January, 2026

Abstract
These notes introduce linear attention and its variants. We cover:

1. How linear attention compresses key-value history into a fixed-size state, reducing com-
plexity from 𝒪(𝐿2) to 𝒪(𝐿);

2. The Delta Rule and gated variants for improved memory fidelity;
3. Chunkwise algorithms that enable parallel training via the WY representation and UT

transformation. Complete derivations and algorithms are provided.

1

Contents

1 Linear Attention and Variants 3
1.1 Original Linear Attention . 3

1.1.1 Limitations of Standard Attention . 3
1.1.2 Intuition Behind Linear Attention . 3

1.2 The Delta Rule (DeltaNet) . 4
1.2.1 The Optimization Perspective: Online SGD on Regression 4
1.2.2 The Retrieval Perspective: Associative Memory with Correction 5

1.3 Gated Delta Rule . 6
1.3.1 Kimi Delta Attention (KDA) . 6

2 Hardware-Efficient Chunkwise Algorithm 6
2.1 Chunkwise Parallelism . 7
2.2 Chunkwise DeltaNet . 8

2.2.1 WY Representation for Delta Rule . 8
2.2.2 UT Transformation . 10
2.2.3 Matrix Inversion via Forward Substitution . 11
2.2.4 Complete Algorithm . 12

2.3 Chunkwise Gated Delta Network . 13
2.3.1 Gate Formulation . 13
2.3.2 Efficient Computation via Similarity Transformation 14
2.3.3 Complete Algorithm . 15

2.4 Chunkwise Kimi Delta Attention . 16

2

1 Linear Attention and Variants

1.1 Original Linear Attention

1.1.1 Limitations of Standard Attention

The standard softmax attention is defined as

o𝑡 =

𝑡∑
𝑖=1

exp(q⊤𝑡 k𝑖)∑𝑡
𝑗=1 exp(q⊤𝑡 k𝑗)

v𝑖

where o𝑖 , q𝑖 , k𝑖 , v𝑖 ∈ ℝ𝑑 are the 𝑖-th output, query, key, and value vector, respectively. 𝑑 represents
the head dimension. In matrix form (used for training and prefill), we have

O = softmax(QK⊤)V

where O,Q,K,V ∈ ℝ𝐿×𝑑. This formulation runs efficiently on GPUs with high throughput.
Techniques like FlashAttention [1] further reduce memory I/O for intermediate results.
However, standard attention suffers from quadratic complexity in sequence length. Each output o𝑡

requires computing the query q𝑡 against all previous keys and values vectors k𝑗 , v𝑗 , 𝑗 ∈ [1, 𝑡]. This
requires storing all key-value pairs (KV-cache). Since head dimension 𝑑 is constant, we have

• Computational Complexity: 𝒪(𝐿2𝑑) = 𝒪(𝐿2)
• Memory Complexity: 𝒪(𝐿𝑑) = 𝒪(𝐿)

With the emergence of multimodal and reasoning models, LLM context lengths keep increasing,
making both compute and memory costs prohibitively expensive.

1.1.2 Intuition Behind Linear Attention

The attention mechanism can be interpreted in many ways. One perspective views it as computing
similarity scores between a query and all keys.

o𝑡 =

𝑡∑
𝑖=1

sim(q𝑡 , k𝑖)∑𝑡
𝑗=1 sim(q𝑡 , k𝑗)

v𝑖

Standard attention uses the exponential function for similarity function sim.
Linear Attention [2] defines a kernel-based similarity sim(q, k) = 𝜙(q)⊤𝜙(k), where 𝜙 : ℝ𝑑 → ℝ𝑑

is a feature map. The attention function becomes

o𝑡 =

𝑡∑
𝑖=1

𝜙(q𝑡)⊤𝜙(k𝑖)∑𝑡
𝑗=1 𝜙(q𝑡)⊤𝜙(k𝑗)

v𝑖

Using the associativity of matrix multiplication, this simplifies to

3

o𝑡 =
𝜙(q𝑡)⊤

∑𝑡
𝑖=1 𝜙(k𝑖)v⊤𝑖

𝜙(q𝑡)⊤
∑𝑡

𝑗=1 𝜙(k𝑗)
=

S𝑡𝜙(q𝑡)
z⊤𝑡 𝜙(q𝑡)

where S𝑡 =
∑𝑡

𝑖=1 v𝑖𝜙(k𝑖)⊤ ∈ ℝ𝑑×𝑑, and z𝑡 =
∑𝑡

𝑗=1 𝜙(k𝑗) ∈ ℝ𝑑. The numerator is a ℝ𝐷 vector, the
denominator is a scalar.
Later research [3] shows that removing the denominator improves numerical stability, and that the
identity mapping works well for 𝜙. This simplifies the equation to

o𝑡 = S𝑡q𝑡 ∈ ℝ𝑑

with the state update rules of

S𝑡 =

𝑡∑
𝑖=1

v𝑖k⊤𝑖 = S𝑡−1 + v𝑡k⊤𝑡 ∈ ℝ𝑑×𝑑

It is essentially a linear RNN with matrix-valued hidden states.
Why it matters: It effectively "compresses" the history of all keys and values K,V ∈ ℝ𝐿×𝑑 into
this fixed-size state matrix S ∈ ℝ𝑑×𝑑. This reduces the computational complexity to 𝒪(𝐿) and the
memory complexity to 𝒪(1).

1.2 The Delta Rule (DeltaNet)

Essentially, the state S in Linear Attention is a key-value associative memory. The problem with the
original state update rule is that it accumulates additively without bound. Values grow unbounded,
and old information persists indefinitely. This leads to poor Associative Recall, i.e., the ability to
retrieve a specific value given its key. It cannot overwrite or update specific facts efficiently; it just
accumulates noise.
The Delta Rule [6] introduces a "correction" mechanism. Rather than simply adding new data, it
computes the difference (delta) between the state’s current prediction and the target value, then
updates the state to minimize this error

S𝑡 = S𝑡−1 − 𝛽𝑡(S𝑡−1k𝑡 − v𝑡)k⊤𝑡

where 𝛽𝑡 is the learning rate, S𝑡−1k𝑡 is the prediction, and v𝑡 is the actual value.
We have two interpretations of the Delta Rule in the context of Linear Attention.

1.2.1 The Optimization Perspective: Online SGD on Regression

This perspective treats matrix S not just as a state, but as a set of weights for a linear model. At
each step, the model trains on the current token to better predict values from keys.
At step 𝑡, we want the matrix S to map the current key k𝑡 to the current value v𝑡 . We define the loss
using mean squared error.

ℒ𝑡(S) =
1
2∥Sk𝑡 − v𝑡∥2

4

To minimize this loss, we compute the gradient with respect to S.

∇Sℒ𝑡 = (Sk𝑡 − v𝑡)k⊤𝑡

Applying one step of Stochastic Gradient Descent (SGD) with learning rate 𝛽𝑖 .

S𝑡 = S𝑡−1 − 𝛽𝑡∇Sℒ𝑡(S𝑡−1)
= S𝑡−1 − 𝛽𝑡(S𝑡−1k𝑡 − v𝑡)k⊤𝑡

This is precisely the Delta Rule.

1.2.2 The Retrieval Perspective: Associative Memory with Correction

This perspective views the state S as a database that stores pairs (k, v). We can retrieve v by querying
with k.
Original Linear Attention uses simple addition S𝑡 = S𝑡−1 + v𝑡k⊤𝑡 . When we query the database with
k𝑡 to retrieve v𝑡 , we get:

v′𝑡 = S𝑡k𝑡

= (S𝑡−1 + v𝑡k⊤𝑡)k𝑡

= (S𝑡−2 + v𝑡−1k⊤𝑡−1 + v𝑡k⊤𝑡)k𝑡

= v𝑡(k⊤𝑡 k𝑡) +
(
𝑡−1∑
𝑖=1

v𝑖k⊤𝑖

)
k𝑡

= v𝑡(k⊤𝑡 k𝑡)︸ ︷︷ ︸
Desired term

+
𝑡−1∑
𝑖=1

v𝑖(k⊤𝑖 k𝑡)︸ ︷︷ ︸
Interference

Interference: Every single item from the beginning (𝑖 = 1) to the last step (𝑖 = 𝑡 − 1) contributes to
the output, weighted by the dot product (k⊤

𝑖
k𝑡).

• If previous keys were all orthogonal (k⊤
𝑖

k𝑡 = 0 for all 𝑖 ≠ 𝑡), the interference term would
vanish, giving v′𝑡 = v𝑡 .

• In high dimensions, random vectors are rarely orthogonal. As context length grows, even
small correlations accumulate into significant noise.

The Delta Rule first queries the memory’s current prediction S𝑜𝑙𝑑k𝑛𝑒𝑤 , then subtracts it from the
target value before updating,

S𝑛𝑒𝑤 = S𝑜𝑙𝑑 + 𝛽𝑡(v𝑡𝑎𝑟𝑔𝑒𝑡 − S𝑜𝑙𝑑k𝑛𝑒𝑤︸ ︷︷ ︸
v𝑝𝑟𝑒𝑑𝑖𝑐𝑡

)k⊤𝑛𝑒𝑤

so we have
S𝑡 = S𝑡−1 + 𝛽𝑡(v𝑡 − S𝑡−1k𝑡)k⊤𝑡

5

If we query the matrix immediately after the update (assuming normalized keys k⊤𝑡 k𝑡 = 1 and step
size 𝛽𝑡 = 1 for simplicity):

S𝑡k𝑡 = (S𝑡−1 + 𝛽𝑡(v𝑡 − S𝑡−1k𝑡)k⊤𝑡)k𝑡

= S𝑡−1k𝑡 + (v𝑡 − S𝑡−1k𝑡)(k⊤𝑡 k𝑡)
= S𝑡−1k𝑡 + v𝑡 − S𝑡−1k𝑡

= v𝑡

In practice, the learning rate 𝛽𝑡 ∈ (0, 1) is set dynamically. When 𝛽𝑡 = 0, the memory content
remains unchanged; and when 𝛽𝑡 = 1, the old value is completely replaced.

1.3 Gated Delta Rule

Even with Delta Rule correction, it can be useful to decay old context (e.g., forgetting the start of a
sentence). Gated DeltaNet (GDN) [5] introduces a scalar forget gate, 𝛼𝑡 ∈ (0, 1), to decay the old
state.

S𝑡 = 𝛼𝑡S𝑡−1 + 𝛽𝑡(v𝑡 − 𝛼𝑡S𝑡−1k𝑡)k⊤𝑡
= 𝛼𝑡S𝑡−1(I − 𝛽𝑡k𝑡k⊤𝑡) + 𝛽𝑡v𝑡k⊤𝑡

The state matrix S has a fixed size. It can only store limited information before saturating. Pure
DeltaNet optimizes the matrix without any forgetting mechanism. For very long sequences, the
matrix becomes overloaded with competing associations. Gated DeltaNet decays old memories to
free capacity for new information.

1.3.1 Kimi Delta Attention (KDA)

In most GDN models, 𝛼 is a scalar, which means everything in the state fades equally. Kimi Delta
Attention (KDA) [4] introduces a diagonalized gate diag(𝜶𝑡), enabling per-dimension control over
memory decay and positional awareness.

S𝑡 = (I − 𝛽𝑡k𝑡k⊤𝑡)diag(𝜶𝑡)S𝑡−1 + 𝛽𝑡k𝑡v⊤𝑡

Unlike scalar gating, the diagonal matrix diag(𝜶𝑡) allows each row of the state to decay at a different
rate.

2 Hardware-Efficient Chunkwise Algorithm

Linear Attention transforms the parallelizable attention computation (QK⊤)V into a recurrent form.
While this reduces memory and computational costs, it can hurt throughput, especially during
training and prefill.
For multi-token input, using only the recurrent formula (S𝑡 = S𝑡−1 + . . .) requires waiting for each
token to complete before processing the next. Since per-token computation is small, this results in
poor hardware utilization and low throughput.

6

2.1 Chunkwise Parallelism

Chunkwise Parallelism [6] is a hybrid approach combining parallel and sequential computation.
Instead of calculating intermediate hidden states for every token sequentially, we update states at
regular intervals of size 𝐶 (the chunk size). This allows us to exploit parallel matrix multiplication
to generate all 𝐶 outputs in a chunk. We illustrate this using original Linear Attention on the first
chunk.
The State Update (Inter-chunk): First, we express the recurrent state update for a full chunk. For a
chunk from time 1 to 𝐶, the final state is the sum of the previous state (S0) and all key-value updates
within the chunk,

S𝐶 = S𝐶−1 + v𝐶k⊤𝐶
= S𝐶−2 + v𝐶−1k⊤𝐶−1 + v𝐶k⊤𝐶

= S0 +
𝐶∑
𝑖=1

v𝑖k⊤𝑖

= S0 +V⊤1:𝐶K1:𝐶

where V1:𝐶 ,K1:𝐶 ∈ ℝ𝐶×𝑑. The term V⊤1:𝐶K1:𝐶 results in a 𝑑 × 𝑑 matrix. Unlike the sequential sum,
this matrix multiplication can be efficiently parallelized on hardware.
The Output Calculation (Intra-chunk): Next, we derive the output for any specific token 𝑟 inside
the chunk (where 1 ≤ 𝑟 ≤ 𝐶). The output vector o𝑟 depends on the current state S𝑟 and the query
q𝑟 .

o𝑟 = S𝑟q𝑟

=

(
S0 +

𝑟∑
𝑖=1

v𝑖k⊤𝑖

)
q𝑟

= S0q𝑟 +
𝑟∑

𝑖=1
v𝑖(k⊤𝑖 q𝑟)

By stacking the vectors into matrices for the entire chunk, we can compute all outputs 𝑂1:𝐶 ∈ ℝ𝐶×𝑑

in parallel,
O1:𝐶 = Q1:𝐶S⊤0︸ ︷︷ ︸

First Term

+Mask(Q1:𝐶K⊤1:𝐶)V1:𝐶︸ ︷︷ ︸
Second Term

where the first term applies the historical context (previous state S0) to all queries in the chunk
simultaneously. The second term resembles standard causal self-attention within the chunk, but
without softmax.
This shows that we can effectively parallelize computation within chunks while maintaining linear
complexity over the full sequence.

7

2.2 Chunkwise DeltaNet

2.2.1 WY Representation for Delta Rule

However, the chunkwise algorithm does not directly apply to DeltaNet, which introduces decay on
St−1.

S𝑡 = S𝑡−1 − 𝛽𝑡(S𝑡−1k𝑡 − v𝑡)k⊤𝑡
= S𝑡−1 (I − 𝛽𝑡k𝑡k⊤𝑡)︸ ︷︷ ︸

Decay 𝐷𝑡

+𝛽𝑡v𝑡k⊤𝑡

Define the decay matrix D𝑡 := I − 𝛽𝑡k𝑡k⊤𝑡 . Computing the end-of-chunk state requires applying
these decay matrices to both the state and each update.

S𝐶 = S𝐶−1D𝐶 + 𝛽𝐶v𝐶k⊤𝐶
= S𝐶−2D𝐶−1D𝐶 + 𝛽𝐶−1v𝐶−1k⊤𝐶−1D𝐶 + 𝛽𝐶v𝐶k⊤𝐶
...

= S0

𝐶∏
𝑡=1

D𝑡 +
𝐶∑
𝑡=1
(𝛽𝑡v𝑡k⊤𝑡

𝐶∏
𝑗=𝑡+1

D𝑗)

The issue is that we cannot simply factor out the D terms or compute them in parallel. Each
term in the summation requires a different partial product of the D matrices, creating sequential
dependencies.
To address this, we split the state update into two components,

S𝐶 = S0 · P𝐶︸ ︷︷ ︸
Decaying the Past

+ H𝐶︸︷︷︸
Accumulating the Update

where P𝐶 =
∏𝐶

𝑡=1 D𝑡 , H𝐶 =
∑𝐶

𝑡=1(𝛽𝑡v𝑡k⊤𝑡
∏𝐶

𝑗=𝑡+1 D𝑗).
Our goal is to express P𝐶 and H𝐶 as sums of rank-1 terms. This enables computation via matrix
multiplications and elementwise operations, replacing the sequential loop over 𝐶.

a. The Transformation of P
P follows the classic WY Representation for Householder-like matrices. The theorem states that we
can collapse the product of 𝐶 rank-1 updates into a single summation of rank-1 updates,

P𝐶 =

𝐶∏
𝑡=1
(I − 𝛽𝑡k𝑡k⊤𝑡) = I −

𝐶∑
𝑡=1

w𝑡k⊤𝑡

where w𝑡 is a new decay weight vector to be calculated. The theorem can be proved by mathematical
induction as follows.

8

𝐶∏
𝑡=1

D𝑡 =

𝐶−1∏
𝑡=1

D𝑡(I − 𝛽𝐶k𝐶k⊤𝐶)

= (I −
𝐶−1∑
𝑡=1

w𝑡k⊤𝑡)(I − 𝛽𝐶k𝐶k⊤𝐶)

= I −
𝐶−1∑
𝑡=1

w𝑡k⊤𝑡 − 𝛽𝐶k𝐶k⊤𝐶 + (
𝐶−1∑
𝑡=1

w𝑡k⊤𝑡)𝛽𝐶k𝐶k⊤𝐶

= I −
𝐶−1∑
𝑡=1

w𝑡k⊤𝑡 − 𝛽𝐶

(
k𝐶 −

𝐶−1∑
𝑡=1

w𝑡k⊤𝑡 k𝐶

)
︸ ︷︷ ︸

w𝐶

k⊤𝐶

= I −
𝐶∑
𝑡=1

w𝑡k⊤𝑡

The proof also shows the recursive formula for computing the w vector.

b. The Transformation of H
Now consider H𝐶 . H𝐶 represents the state contribution from updates within the current chunk
alone. In other words, it equals the final state S𝐶 when the initial state is zero, S0 = 0.

S𝐶 = S0 · P𝐶 +H𝐶 ,

H𝐶 = S𝐶

��
S0=0.

We show that S𝐶 (with S0 = 0) can also be written as a single sum of rank-1 terms, S𝐶 =
∑𝐶

𝑡=1 u𝑡k⊤𝑡 ,
for some vectors u𝑡 . The derivation follows a similar induction as for P𝐶 .

S𝐶 = S𝐶−1(I − 𝛽𝐶k𝐶k⊤𝐶) + 𝛽𝑛v𝐶k⊤𝐶

= (
𝐶−1∑
𝑡=1

u𝑡k⊤𝑡)(I − 𝛽𝐶k𝐶k⊤𝐶) + 𝛽𝐶v𝐶k⊤𝐶

=

𝐶−1∑
𝑡=1

u𝑡k⊤𝑡 − (
𝐶−1∑
𝑡=1

u𝑡k⊤𝑡)𝛽𝐶k𝐶k⊤𝐶 + 𝛽𝐶v𝐶k⊤𝐶

=

𝐶−1∑
𝑡=1

u𝑡k⊤𝑡 + 𝛽𝐶

(
v𝐶 −

𝐶−1∑
𝑡=1

u𝑡k⊤𝑡 k𝐶

)
︸ ︷︷ ︸

u𝐶

k⊤𝐶

=

𝐶∑
𝑡=1

u𝑡k⊤𝑡

c. Matrix Form

9

Substituting the simplified P𝐶 and H𝐶 into the state equation,

S𝐶 = S0 · P𝐶 +H𝐶

= S0
(
I −

𝐶∑
𝑡=1

w𝑡k⊤𝑡
)
+

𝐶∑
𝑡=1

u𝑡k⊤𝑡

= S0 +
𝐶∑
𝑡=1
(u𝑡 − S0w𝑡)k⊤𝑡 ,

where the vectors w𝑡 and u𝑡 are defined recursively as

w𝑡 = 𝛽𝑡

(
k𝑡 −

𝑡−1∑
𝑖=1

w𝑖k⊤𝑖 k𝑡

)
,

u𝑡 = 𝛽𝑡

(
v𝑡 −

𝑡−1∑
𝑖=1

u𝑖k⊤𝑖 k𝑡

)
.

We can then compute the output vector o𝑡 for any time step 𝑡 within the chunk as

o𝑡 = S𝑡q𝑡

= S0q𝑡 +
𝑡∑

𝑗=1
(u𝑗 − S0w𝑗)(k⊤𝑗 q𝑡).

By stacking all time steps in the chunk into matrices of shape 𝐶 × 𝑑, we obtain the compact matrix
forms

S𝐶 = S0 + (U −WS⊤0)⊤K,

O1:𝐶 = QS⊤0 +Mask(QK⊤) (U −WS⊤0),
where Mask(·) applies a causal (strictly lower-triangular) mask over the chunk.
This derivation applies recursively across chunks by treating the final state of the previous chunk
as the initial state S0 for the current chunk.

2.2.2 UT Transformation

While the WY representation enables parallelization of the state update, the computation of W and
U remains a bottleneck due to their recursive definitions. Specifically, the formulas for w𝑡 and u𝑡

are inherently sequential.

w𝑡 = 𝛽𝑡

(
k𝑡 −

𝑡−1∑
𝑖=1

w𝑖(k⊤𝑖 k𝑡)
)
= 𝛽𝑡k𝑡 +

𝑡−1∑
𝑖=1

w𝑖(𝛽𝑡k⊤𝑖 k𝑡)

This recursion requires a sequential loop over 𝑡 = 1→ 𝐶, which limits parallelism.
To address this, the UT Transformation rewrites the recursion as a triangular matrix inversion,
enabling efficient parallel computation.

10

Define a strictly lower-triangular matrix L that encodes the interaction terms between steps 𝑖 and 𝑡.

L𝑡 ,𝑖 =

{
𝛽𝑡k⊤𝑖 k𝑡 if 𝑖 < 𝑡 (past affects future)
0 otherwise

In matrix notation, this is the lower triangle of the Gram matrix,

L = tril(diag(𝜷)KK⊤ ,−1)

where K ∈ ℝ𝐶×𝑑 contains all keys, 𝜷 ∈ ℝ𝐶 contains all learning rates of the block, and −1 denotes
the strict lower triangle (excluding the diagonal).
Stacking all w𝑡 as rows of matrix W. We can write the recursion for all time steps at once.

W = diag(𝜷)K − LW
W = (I + L)−1(diag(𝛽)K)

2.2.3 Matrix Inversion via Forward Substitution

The UT transformation requires computing T = (I + L)−1diag(𝜷) ∈ ℝ𝐶×𝐶 , where L is strictly lower
triangular. Since I + L is unit lower triangular (lower triangular with ones on the diagonal), we can
efficiently compute T using forward substitution.
We solve the following linear system (I + L)T = diag(𝜷) column by column.

1 0 0 · · · 0
𝐿21 1 0 · · · 0
𝐿31 𝐿32 1 · · · 0
...

...
...

. . .
...

𝐿𝐶1 𝐿𝐶2 𝐿𝐶3 · · · 1



𝑇11 𝑇12 · · · 𝑇1𝐶
𝑇21 𝑇22 · · · 𝑇2𝐶
𝑇31 𝑇32 · · · 𝑇3𝐶
...

...
. . .

...

𝑇𝐶1 𝑇𝐶2 · · · 𝑇𝐶𝐶


=


𝛽1 0 0 · · · 0
0 𝛽2 0 · · · 0
0 0 𝛽3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 𝛽𝐶


Let t ∈ ℝ𝐶 be a column of T, and let b ∈ ℝ𝐶 be a column of diag(𝜷). We solve (I + L)t = b by
expanding the system.

𝑡1 = 𝑏1

𝐿21𝑡1 + 𝑡2 = 𝑏2

𝐿31𝑡1 + 𝐿32𝑡2 + 𝑡3 = 𝑏3
...

𝐿𝐶1𝑡1 + 𝐿𝐶2𝑡2 + · · · + 𝐿𝐶,𝐶−1𝑡𝐶−1 + 𝑡𝐶 = 𝑏𝐶

11

Rearranging each equation to solve for 𝑡𝑖 .

𝑡1 = 𝑏1

𝑡2 = 𝑏2 − 𝐿21𝑡1

𝑡3 = 𝑏3 − 𝐿31𝑡1 − 𝐿32𝑡2
...

𝑡𝐶 = 𝑏𝐶 −
𝐶−1∑
𝑗=1

𝐿𝐶𝑗𝑡 𝑗

Each component 𝑡𝑖 depends only on previously computed components 𝑡1 , . . . , 𝑡𝑖−1, enabling
sequential computation from 𝑖 = 1 to 𝑖 = 𝐶. We repeat this procedure for 𝑘 = 1, . . . , 𝐶 to obtain all
columns of T.

Complexity. Forward substitution for a single column requires 𝒪(𝐶2) operations. Computing
the full matrix T requires 𝐶 such solves, giving 𝒪(𝐶3) total operations. Since 𝐶 is a small constant
(typical chunk size), this cost is negligible compared to the 𝒪(𝐶𝑑2)matrix multiplications in the
main algorithm.

2.2.4 Complete Algorithm

Together, these techniques enable hardware-efficient execution of DeltaNet.
We process the sequence in blocks of size 𝐶, maintaining a fixed-size recurrent state S ∈ ℝ𝑑×𝑑

between blocks.
Inputs:

• Current block: Q,K,V ∈ ℝ𝐶×𝑑 , 𝜷 ∈ ℝ𝐶

• Previous state: S0 ∈ ℝ𝑑×𝑑

Algorithm Steps:
1. Compute Interaction Matrix:

L = tril(diag(𝜷)KK⊤ ,−1) ∈ ℝ𝐶×𝐶

2. Invert Matrix:
T = (I + L)−1diag(𝜷) ∈ ℝ𝐶×𝐶

3. Generate the W and U:
W = TK ∈ ℝ𝐶×𝑑 , U = TV ∈ ℝ𝐶×𝑑

4. Update State (Inter-Chunk):

S𝐶 = S0 + (U −WS⊤0)⊤K ∈ ℝ𝑑×𝑑

5. Compute Output (Intra-Chunk):

O1:𝐶 = QS⊤0 +Mask(QK⊤)(U −WS⊤0) ∈ ℝ𝐶×𝑑

12

2.3 Chunkwise Gated Delta Network

2.3.1 Gate Formulation

Recall that GDN introduces a scalar forget gate, 𝛼𝑡 ∈ (0, 1), to decay the old state.

S𝑡 = 𝛼𝑡S𝑡−1(I − 𝛽𝑡k𝑡k⊤𝑡) + 𝛽𝑡v𝑡k⊤𝑡

We retain the decay matrix D𝑡 := I − 𝛽𝑡k𝑡k⊤𝑡 , and define the cumulative decay 𝛾𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 . The
end-of-chunk state becomes:

S𝐶 = 𝛼𝐶S𝐶−1D𝐶 + 𝛽𝐶v𝐶k⊤𝐶
= 𝛼𝐶𝛼𝐶−1S𝐶−2D𝐶−1D𝐶 + 𝛼𝐶𝛽𝐶−1v𝐶−1k⊤𝐶−1D𝐶 + 𝛽𝐶v𝐶k⊤𝐶
...

= S0𝛾𝐶D𝑡 +
𝐶∑
𝑡=1
(𝛽𝑡v𝑡k⊤𝑡

𝐶∏
𝑗=𝑡+1

𝛼 𝑗D𝑗)

= 𝛾𝐶S0

𝐶∏
𝑡=1

D𝑡 +
𝐶∑
𝑡=1
(𝛽𝑡v𝑡k⊤𝑡

𝛾𝐶
𝛾𝑡

D𝑗)

The first term P𝐶 =
∏𝐶

𝑡=1 D𝑡 remains unchanged.

However, the second term becomes H̃𝐶 =
∑𝐶

𝑡=1(𝛽𝑡v𝑡k⊤𝑡
𝛾𝐶
𝛾𝑡

D𝑗). Following a similar derivation:

H̃𝐶 =

𝐶∑
𝑡=1
(𝛾𝐶
𝛾𝑡

ũ𝑡k⊤𝑡), ũ𝑡 = 𝛽𝑡

(
v𝑡 −

𝑡−1∑
𝑖=1
(ũ𝑖

𝛾𝑡
𝛾𝑖

k⊤𝑖 k𝑡)
)

By the UT transformation:

Ũ =
(
I + tril(diag(𝜷)(𝚪 ⊙KK⊤),−1)

)−1 diag(𝜷)V

where 𝚪 ∈ ℝ𝐶×𝐶 represents internal relative decay between steps, where 𝚪𝑖 𝑗 =
∏𝑖

𝑡=𝑗+1 𝛼𝑡 =
𝛾𝑖
𝛾𝑗

, if
𝑖 ≥ 𝑗 and 𝚪𝑖 𝑗 = 0 otherwise.

13

And we have the state update equation

S𝐶 = 𝛾𝐶S0 · P𝐶 + H̃𝐶

= 𝛾𝐶S0
(
I −

𝐶∑
𝑡=1

w𝑡k⊤𝑡
)
+

𝐶∑
𝑡=1

𝛾𝐶
𝛾𝑡

ũ𝑡k⊤𝑡

= 𝛾𝐶S0 +
𝐶∑
𝑡=1
(𝛾𝐶
𝛾𝑡

ũ𝑡 − 𝛾𝐶S0w𝑡)k⊤𝑡

= (𝛾𝐶S0) +
𝐶∑
𝑡=1
(ũ𝑡 − S0(𝛾𝑡w𝑡))(

𝛾𝐶
𝛾𝑡

k⊤𝑡)

=
−→
S0 +

𝐶∑
𝑡=1
(ũ𝑡 − S0

←−w𝑡)
−→
k𝑡

and output vector o𝑡

o𝑡 = S𝑡q𝑡

= S0(𝛾𝑡q𝑡) +
𝑡∑

𝑖=1
(ũ𝑖 − S0(𝛾𝑖w𝑖))(

𝛾𝑡
𝛾𝑖

k⊤𝑖 q𝑡)

= S0
←−q𝑡 +

𝑡∑
𝑖=1
(ũ𝑖 − S0

←−w𝑡)(
𝛾𝑡
𝛾𝑖

k⊤𝑖 q𝑡)

where the arrow notation is defined as follows:
• Left Arrow (←−x𝑡 = 𝛾𝑡x𝑡): Decays from the start of the chunk to step 𝑡. Applied to variables

interacting with history (Q,W).
• Right Arrow (−→x𝑡 = 𝛾𝐶

𝛾𝑡
x𝑡): Decays from step 𝑡 to the end of the chunk. Applied to variables

that write to the final state (K).

• Decayed History (
−→
S0 = 𝛾𝐶S0): The initial state decayed across the entire chunk.

So we have the matrix form:

S𝐶 =
−→
S0 +

(
Ũ −←−WS⊤0

)⊤ −→K
O1:𝐶 =

←−QS⊤0 + (QK⊤ ⊙ 𝚪)
(
Ũ −←−WS⊤0

)
∈ ℝ𝐶×𝑑

2.3.2 Efficient Computation via Similarity Transformation

In the gated delta network, computing both W and Ũ appears to require two separate matrix
inversions, (I + L)−1 and (I + L̃)−1, where L = tril(diag(𝜷)KK⊤ , −1) and L̃ = tril(diag(𝜷) (𝚪 ⊙
KK⊤),−1).
However, we show that these matrices are related by the following similarity transformation,
allowing us to compute only one inverse.

I + L̃ = diag(𝜸)(I + L)diag(𝜸)−1

14

Recall the definitions:
𝐿𝑖 𝑗 = 𝛽𝑖(k⊤𝑖 k𝑗), 𝑖 > 𝑗

𝐿̃𝑖 𝑗 = 𝛽𝑖 ·
𝛾𝑖

𝛾𝑗
· (k⊤𝑖 k𝑗), 𝑖 > 𝑗

We can apply diagonal matrix scales entries to L to get L̃.[
diag(𝜸)Ldiag(𝜸)−1]

𝑖 𝑗
=

𝛾𝑖

𝛾𝑗
· 𝛽𝑖(k⊤𝑖 k𝑗) = 𝐿̃𝑖 𝑗

For the identity matrix, the diagonal entries are preserved.[
diag(𝜸)Idiag(𝜸)−1]

𝑖𝑖
=

𝛾𝑖

𝛾𝑖
= 1

Using this property, let T = (I+L)−1. Since T is unit lower triangular, we can reuse the decay matrix
𝚪 to obtain:

T̃ = (I + L̃)−1 = 𝚪 ⊙ T

The scaling operation is 𝒪(𝐶2) with fully parallel elementwise operations, which is significantly
cheaper than an additional 𝒪(𝐶3) forward substitution with sequential dependencies.

2.3.3 Complete Algorithm

Inputs:
• Current block: Q,K,V ∈ ℝ𝐶×𝑑 , 𝜷, 𝜶 ∈ ℝ𝐶

• Previous state: S0 ∈ ℝ𝑑×𝑑

Algorithm Steps:
1. Precompute Decays:

• 𝛾𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 for 𝑡 = 1, ..., 𝐶
• 𝚪 ∈ ℝ𝐶×𝐶 with

Γ𝑖 , 𝑗 =

{
𝛾𝑖
𝛾𝑗

if 𝑖 ≥ 𝑗

0 otherwise

• Decayed matrices:
−→
S0 = 𝛾𝐶 S0 ∈ ℝ𝑑×𝑑

←−
Q 𝑡 = 𝛾𝑡 Q𝑡 ⇒ ←−

Q ∈ ℝ𝐶×𝑑

−→
K 𝑡 =

𝛾𝐶
𝛾𝑡

K𝑡 ⇒ −→
K ∈ ℝ𝐶×𝑑

2. Compute Interaction Matrix:

L = tril
(
diag(𝜷)KK⊤ , −1

)
∈ ℝ𝐶×𝐶

3. Invert Matrix via Forward Substitution:

T = (I + L)−1 diag(𝜷) ∈ ℝ𝐶×𝐶

15

4. Compute W:
W = TK ∈ ℝ𝐶×𝑑

←−
W𝑡 = 𝛾𝑡 W𝑡

5. Compute T̃ via Similarity Transformation:

T̃ = 𝚪 ⊙ T ∈ ℝ𝐶×𝐶

6. Compute Ũ:
Ũ = T̃V ∈ ℝ𝐶×𝑑

7. Compute Shared Term:
A = Ũ −←−WS⊤0 ∈ ℝ𝐶×𝑑

8. Update State (Inter-Chunk):
S𝐶 =

−→
S0 +A⊤

−→
K ∈ ℝ𝑑×𝑑

9. Compute Output (Intra-Chunk):

O1:𝐶 =
←−
Q S⊤0 + (QK⊤ ⊙ 𝚪)A ∈ ℝ𝐶×𝑑

2.4 Chunkwise Kimi Delta Attention

The derivation of the chunkwise KDA algorithm refers to Appendix B of [4].
Inputs:

• Current block: Q,K,V ∈ ℝ𝐶×𝑑, 𝜷 ∈ ℝ𝐶 , 𝜶 ∈ ℝ𝐶×𝑑

• Previous state: S0 ∈ ℝ𝑑×𝑑

Algorithm Steps:
1. Precompute Decays and Decayed Inputs:

• Prefix cumulative decays (decay from position 1 to 𝑟):

𝜸𝑟 := 𝜸1→𝑟 =

𝑟∏
𝑘=1

𝜶𝑘 ∈ ℝ𝑑 , 𝑟 = 1, . . . , 𝐶,

where the multiplication is element-wise. Stack them as

Γ1→𝐶 :=


𝜸1

...

𝜸𝐶

 =


𝜸1→1

𝜸1→2

...

𝜸1→𝐶

 ∈ ℝ
𝐶×𝑑 .

• Suffix-to-end decays (decay from position 𝑟 to the end): define 𝜸0 := 1 and compute

𝜸𝑟→𝐶 :=
𝐶∏
𝑘=𝑟

𝜶𝑘 =
𝜸𝐶

𝜸𝑟−1 ∈ ℝ
𝑑 , 𝑟 = 1, . . . , 𝐶,

16

where the division is element-wise. Stack them as

Γ𝑖→𝐶 :=


𝜸1→𝐶

𝜸2→𝐶

...

𝜸𝐶→𝐶


∈ ℝ𝐶×𝑑 .

• Decayed chunk inputs:

←−
Q := Γ1→𝐶 ⊙Q ∈ ℝ𝐶×𝑑

←−
K := Γ1→𝐶 ⊙K ∈ ℝ𝐶×𝑑

←−
K 𝑖𝑛𝑣 := K ⊘ Γ1→𝐶 ∈ ℝ𝐶×𝑑 , (element-wise division)
−→
K := Γ𝑖→𝐶 ⊙K ∈ ℝ𝐶×𝑑

• Decayed initial state (decayed over the entire chunk):

−→
S0 := diag(𝜸𝐶)S0 ∈ ℝ𝑑×𝑑 .

2. Compute Interaction Matrix:

L = tril
(
diag(𝜷)←−K(←−K 𝑖𝑛𝑣)⊤ ,−1

)
∈ ℝ𝐶×𝐶 .

3. Invert Matrix: It uses forward substitution to get the inverse.

M = (I + L)−1diag(𝜷) ∈ ℝ𝐶×𝐶 .

4. Compute W and U:
W = M

←−
K ∈ ℝ𝐶×𝑑 , U = M V ∈ ℝ𝐶×𝑑 .

5. Compute A: It combines the update and historical correction terms.

A = U −WS0 ∈ ℝ𝐶×𝑑

6. Update State (Inter-Chunk):

S𝐶 =
−→
S0 +

(−→
K

)⊤
A ∈ ℝ𝑑×𝑑 .

7. Compute Output (Intra-Chunk):

O1:C =
←−
Q S0 + tril

(←−
Q (←−K 𝑖𝑛𝑣)⊤ ,−1

)
A ∈ ℝ𝐶×𝑑 .

17

References

[1] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022.

[2] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention, 2020.

[3] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast
weight programmers. 2021.

[4] Kimi Team, Yu Zhang, Zongyu Lin, Xingcheng Yao, Jiaxi Hu, Fanqing Meng, Chengyin Liu, Xin
Men, Songlin Yang, Zhiyuan Li, Wentao Li, Enzhe Lu, Weizhou Liu, Yanru Chen, Weixin Xu,
Longhui Yu, Yejie Wang, Yu Fan, Longguang Zhong, Enming Yuan, Dehao Zhang, Yizhi Zhang,
T. Y. Liu, Haiming Wang, Shengjun Fang, Weiran He, Shaowei Liu, Yiwei Li, Jianlin Su, Jiezhong
Qiu, Bo Pang, Junjie Yan, Zhejun Jiang, Weixiao Huang, Bohong Yin, Jiacheng You, Chu Wei,
Zhengtao Wang, Chao Hong, Yutian Chen, Guanduo Chen, Yucheng Wang, Huabin Zheng,
Feng Wang, Yibo Liu, Mengnan Dong, Zheng Zhang, Siyuan Pan, Wenhao Wu, Yuhao Wu,
Longyu Guan, Jiawen Tao, Guohong Fu, Xinran Xu, Yuzhi Wang, Guokun Lai, Yuxin Wu, Xinyu
Zhou, Zhilin Yang, and Yulun Du. Kimi linear: An expressive, efficient attention architecture,
2025.

[5] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear
attention transformers with hardware-efficient training, 2024.

[6] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear
transformers with the delta rule over sequence length, 2025.

18

